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/ The Amplitude Response of a Coupled
Transmission Line, All-Pass
Network Having Loss

RICHARD A. KOLKER, MEMBER, IEEE

Abstract—The voltage transfer function of a first- and second-order
coupled transmission line, all-pass network having loss is derived. The
amplitude response is calculated from the transfer function. It is shown
that the amplitude response is completely determined when o, the real
part of propagation function, is known. A method for calculating « is
presented and an example is given. The results show that the losses
(dielectric and conductor) cause periodic dips in the amplitude response
of the all-pass networks. However, for practical materials and configura-
tions, the peak amplitude loss is less than 0.4 dB for the first two periodici-
ties. The results show that, for most applications, it is possible to cascade
many first-order or second-order lines before the amplitude response must
be equalized.

I. INTRODUCTION

TEENAART [1] has analyzed nth order, coupled trans-
S mission line, all-pass networks. The proposed use of
these lines was for wideband delay-equalizing net-
works. For this application, the lines were assumed lossless;
thus the amplitude response was constant with frequency.
For other applications, the line loss cannot be neglected. In
particular, if a large number of lines are cascaded, the indi-
vidual network loss is a significant parameter of the synthe-
sis problem.

The purpose of this paper is to derive the transfer func-
tions of a first-order and second-order all-pass line having
small loss. The amplitude response can then be calculated
from this transfer function.

The paper is organized as follows. Section II contains the
basic definitions pertinent to the coupled transmission line,
all-pass network. In Section I1I, the transfer function for the
first- and second-order line is derived. The transfer function
depends on a, the real part of the propagation constant; so
the method by which « is calculated is discussed in Section
IV. In Section V, the amplitude response is plotted for sev-
eral practical first- and second-order lines.

JI. GENERAL CONSIDERATIONS

The basic structure of the all-pass network consists of
two parallel conductors located between ground planes and
interconnected at one end. The structure has both vertical
and horizontal symmetry and each conductor has a length,
L=X\,/4. A single unit of length, L, is called a first-order
line, and is shown in Fig. 1. It is assumed that the structure
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Fig. 1. First-order line.

is homogeneous and the losses are sufficiently small such
that a TEM solution still exists on the line.
The even mode impedance of this structure is given by

1
Zoe = . (1a)
and the odd mode impedance is given by
lom (1b)
G — G

where G and Go are the self susceptances per unit length
of conductor 1 and conductor 2, respectively. Gy is the
susceptance per unit length between conductors 1 and 2.
The characteristic impedance of one conductor to ground is

ZO = (ZmzZoo)”2 (23’)
and the ratio of even-to-odd mode impedance is
Gu— G
p = Zoe/Zoo = __]f___1_2_ ° (zb)
Gll + Gl?

The quantity, p, is important because the transfer function
of the all-pass network is a function of p.

An all-pass second-order line is illustrated in Fig. 2. By
definition Section 1I precedes Section I [1].

For the second-order line it is assumed that:

1) Each section is homogeneous and symmetrical.

2) The length of each section is N\o/4.

3) The characteristic impedance, Z,, of each section is
equal; Z()1=Zoz.

4) The ratio of even-to-odd mode impedance varies;
pFEpa.

In the next section, the transfer function for the first- and
second-order lines are presented.
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Fig. 2. Second-order line.

III. TRANSFER FUNCTION FOR FIRST-
AND SECOND-ORDER LINES

The presence of loss on the lines causes the traveling wave
to be attenuated by a factor proportional to «L (dissipative
loss), and it causes the characteristic impedance of the line
to become complex (mismatch loss). The attenuation con-
stant consists of two parts, i.e., a=a,+as where o, is the
conductor attenuation constant and oy is the dielectric at-
tenuation constant. In the following paragraphs, the lines
are assumed to be in air, s0 a;=0. Later in the paper, a
dielectric is introduced and the equations are modified ac-
cordingly.

The characteristic impedance in the presence of small con-
ductor loss is given by

Zy = Zy'(1 — j/Q@)** ®3)

where Z/ =the characteristic impedance of the lossless net-
work and Q=p/2a.. The susceptances are perturbed in the
same manner, i.e.,

G = G’ (1 — j/@)112
Go =Gy = Gu'(l —j/Q)—1/2-

(4a)
(4b)

The mismatch loss, represented by (3) and (4), can be shown
to be small compared to the dissipative loss and will be
neglected.

The voltage transfer function for the lossless first-order
line is given by eq. (8) of Steenaart [1], as

Ve _ \/E —Jtand ®)
Vi +p+jtand
where §=p3L.
For the lossy case, substitution for 8 of
BL — jaL = 8 — jy (6)

and expanding yields
Ve (v/p — tanh¢) — jtan 6(1 — /p tanh ¢)
Vi (Vp+ tanhy) +jtan 6(1 + +/p tanh ¢)

which is an expression for the voltage transfer ratio of the
lossy first-order line.

)
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Now ¢ is <1 (typically on the order of 0.001). Thus,
tanh ¢ =~y. Then

J(-X 2+tan20 /o)
Vs - / ( \/P> L ®

v 1/ (1+\fp)2 B0 vy

[1-@/Vol~1-24/v/p and

Again, since ¢ is small,

(1—¢v/p)*~1-2¢y+/p. Thus,

2yvp(1 + tan?9)

Val / p + tanz4é
Vi 1/ N 204/ p(1 + tan?6)
p + tan26
/‘/ 1-T ©)
Y 1401
Now
1-T
~ ] —2T for small T
14T
and
vV1—-2 =1 —-T for small T.
Therefore,
vV 2¢/p(l + tan? ¢
i YVp( ) ’ (10)
18} o+ tan?é
which is a general expression for any 6.
When ¢ is an odd multiple of =/2,
14 _
2~ 1 -2V (L1a)
1
When 4 is an even multiple of =/2,
V. 2
V12, (11b)
¥, \/ P

The lossy voltage transfer function for the second-order
line is obtained by following the procedure used in Appendix
I of Steenaart [1] after substitution for § of

o2 .[tan 6,
l:l — —tan §/ taneg’il —J|—=
V2 P1 \/Pl

=8 — g1 = BL — joe,L (12a)
=0 — j¥y = BL — jo.,L. (12b)
The result is, for the second-order line,
! +tan 6, 1
Vp2 . (13)

I_/I P2 tan 01
1 ——tané/tan 8, | + j
P1 \/Pl

+ tan 02’]
Vs



440

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, AUGUST 1967

——
——

||

{a)

(b)

(c)

Fig. 3. Three geometrical configurations of coupled strip lines.

Substitution of §=an even or odd multiple of »/2 in (13)
and use of approximations similar to those for the first-order
line yields

9 . .
;Y_z 1 W1vVps + ¥2Vipe2) (14)
Vl /2 P2

VZ \//1 \pz >

Vl T (\/Pl + \/PZ ( )

The transfer function for both the first- and second-order
lines is a function of «, B, and p. It is assumed that B is
given by

B = w(uoen)'/? (15)
which is the same as in the lossless case. uo and ¢ are the
free-space permeability and permittivity, respectively.

Thus, the problem of calculating the amplitude response
becomes: Given a p (or p; and p; for the second-order line),
calculate the variation of o, with frequency.

The method by which «, is calculated is presented in the
next section; an example is also given.

IV. CALCULATION OF «

The geometrical configuration of the conductors in the
transmission line network can be either coplanar [Fig. 3(a)]
or broadside-coupled [Fig. 3(b) and (c)]. Once the geo-
metrical configuration is chosen, the even and odd mode
impedances can be expressed as functions of the dimensions
of the network [4]-[7]. These dimensions are b, the ground
plane spacing, s, the spacing between the two conductors,
and w, the width of each conductor, In practical applications,
the conductors have finite thickness, 7, which can be included
in the expressions for the even and odd mode impedances
[8]. All dimensions are in meters. Once the expressions for
the even and odd mode impedances are obtained, o, is calcu-

rations shown in Fig. 3(b) where the conductors are in air,
the attenuation constant for the all-pass network is given by

R, [1 <az,,e | e L dZog>
T ss21Z. \ab | o5 ow ot

l (aZOO + 6Z00 6Z00 aZOD)]
Zoo \ 0b ds dw at
where R, is the surface resistance of the conductor in ohms
per meter, and «, is in nepers per meter. Since R, is propor-
tional to the square root of frequency (R,=8.04X10-3( f)!2
for silver, where fis in gigahertz), «, is proportional to (f)'2

As an example of the application of (16), the configuration
in Fig. 3(b) is chosen, and it is assumed that

(16)

> 0.35. an

b—s

Using the equations contained in Cohn [6], [8], the first
term in the brackets of (16) is given by

1 /9Z,. Z,.
()
Zoe b s ow ot

Zae
S - [1 n
188.3(d — s) T

where
d="b— 2.

The second term in the brackets is given by
In (d/s d — d
(d/s) n (d —s) In < >
ws? d—s

Zoo w
188.3 {? T — )
2
+ = () [In (1 +t/s) — In (t/s)]} . 19)

lated by the method presented by Cohn [9]. For the configu- Z,, is given by
7 - 188.3
o 1 d+ 2t 2t d + 2t
+0.4413+~[1n< * >+(S+ )m( i )] 20)
— 8 T d— s d—s s + 2t
and Z,, is given by
188.3
7Joo= " (21)

Lol @E)GEm0

M L0 ml)-om ()]
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Fig. 4. Pole-zero plot of first-order line.

If the structure is filled with a homogeneous dielectric ma-
terial with a relative dielectric constant of e,, the equations
are modified as follows:

1) Equations (16), (18), and (19) are each multiplied by
(e-)V2. Equations (20) and (21) are each divided by
().

2) «, is replaced by « in (6) and (12) where a=a,+a, and
ag= [n(e,)2/\] tan & nepers per meter. \ is the free space
wavelength and tan 6 is the loss tangent of the dielectric.

3) Equation (15) is multiplied by (e,)'/2.

In the next section, the amplitude response of several first-
and second-order lines are plotted for a specific configura-
tion and ground plane spacing.

V. AMPLITUDE RESPONSE CURVES

Before referring to the amplitude response curves, it is
instructive to study the pole-zero pattern of the first- and
second-order lossless lines which are shown in Figs. 4 and
5, respectively [1].

The quantity f, is given by

Jo=¢/No

where ¢ is the velocity of light in air.

The pole-zero pattern, in both cases, is periodic with fre-
quency and the distance between the poles (zeros) and the
imaginary axis is constant. Thus, the time delay of both the
first- and second-order lines is periodic with frequency.

Now the peak loss of the amplitude response (in nepers)
of an all-pass network is proportional to the frequency
times the time delay and inversely proportional to Q [10].

(22)

w X time delay
@

Since the peak time delay of the networks is constant

Peak Amplitude Loss (nepers) =~ (23)
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Fig. 5. Pole-zero plot of second-order line.

and periodic with frequency, and since Q is proportional
to the square root of frequency, the amplitude response
should be periodic with frequency, and the peak loss (in
nepers) should increase with the square root of frequency.
This means that once the peak loss for the lowest point is
known, the magnitude of the peak loss for other amplitude
minima can be obtained quite readily.

The amplitude response of several all-pass first- and
second-order lines are plotted in Figs. 6 to 9. The following
conditions were assumed:

1) The geometrical configuration was that shown in Fig.
3(b).

2) b=0.75 inch; t=0.04 inch; ¢, =1.

3) Equation (16) is valid. [Given conditions 1) and 2),
this means that p<14.7].

4) The conductors were silver-plated.

5) The dielectric medium was air.

Figure 6 shows the amplitude response of a first-order
line for p=14, p=10, and p=>5, respectively. f; is 0.25 GHz.
Figure 7 is the same as Fig. 6 except that f,=0.15 GHz. The
values of a, ranged from 8X10~% at f,=0.25 GHz and
p=14to 1.6 X107 at fo=0.15 GHz and p=5.

The peak loss increases as p increases because the peak
time delay is proportional to (p)V2, and also Q decreases as
p increases. For a given p the peak loss decreases as f, is
increased because «L, the attenuation per quarter wave
length, decreases.

The amplitude response of several second-order lines is
shown in Figs. 8 and 9. Again, the peak loss is proportional
to the peak time delay, and the location of the peak loss is
periodic with frequency. The second-order line with p;=2,
p2=14 has the highest peak time delay, while the line with
p1=10, po=>5 has the lowest peak time delay. The other lines
have the same peak time delay, but the peaks occur at a
different frequency [1]. If several lines have the same p,, the
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peak loss will be greatest in the line that has the highest ps,
because Q decreases with p.

Figure 10 is a plot of the amplitude response of two first-
order lines with the same p but different fis when both
structures are immersed in a dielectric medium. The physical
parameters of the lines are given in the figure. The response
of these lines are similar to the air dielectric lines except
that the peak loss is slightly greater (as is expected) when
there is dielectric present. The value of «. is 0.014 at f;=0.4
GHz.

Some of the above lines were built, and the amplitude
measurements made on these lines were all within twelve
percent of the calculated values.

VI. CONCLUSION

The results show (Figs. 6 to 10) that the losses cause a dip
in the amplitude response of the coupled transmission line,
all-pass networks just as they do for the all-pass network
composed of lumped elements. However, they also show
that for practical configurations and materials, the peak
amplitude loss is small for the first two periodicities. Thus,
it is possible to cascade many first-order or second-order
lines before the amplitude response must be equalized (for
most applications).
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Propagation Through a Twisted Medium

GLENDON C. McCORMICK, MEMBER, IEEE

Abstract—An explicit solution is obtained for propagation through
a uniform twisted anisotropic medium subject to the conditions that
propagation is along the twist axis, and that the structure is fine. The
propagation constants are altered and coupling exists between the propa-
gation modes. A parameter is defined which indicates the tendency of the
radiation to adhere to the structure of the medium. The effects at bound-
ary discontinuities are discussed, and tapers to an isotropic medium are
dealt with. The particular application of the theory to cases of polariza-
tion conversion, circular to plane, and plane to plane are discussed.

1. INTRODUCTION

URING the course of development of a plastic strip
I:) polarizer for an antenna fed by a line source, it
became apparent that the inclination of the strips

was not a simple parameter which could be simply related
to the plane of polarization. The finite thickness and cylin-
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drical shape of the polarizer combine to require individual
strips of helicoidal shape. The inclination angle of the strips
varies significantly about the nominal 45°; and on looking
through the polarizer, the strip structure appears to twist
about the propagation axis.

Consequently, the problem of propagation through a
twisted medium became of interest. Specifically, it was
necessary to determine the correct strip inclination and the
effect of the twist on the differential phase shift. The problem
was idealized by assuming an infinitesimally fine structure,
a uniform twist, and normal incidence.

Propagation through a twisted medium is a special case
of a more general theory developed by Suchy.! Recently, a
paper by van Doeren? has treated the twisted medium prob-
Iem by means of direct computer solutions of the differential
equations. The solution in explicit form for the case of a
uniform twist is given in the following.

1 K. Suchy, “Gekoppelte Wellengleichungen fiir inhomogene
anisotrope Medien,” Z. Naturforsch., vol. 9a, pp. 630-636, 1954,

2 R. E. van Doeren, *“Polarization transformation in twisted aniso-
tropic media,” IEEE Trans. Microwave Theory and Techniques, vol.
MTT-14, pp. 106-111, March 1966.



