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J The Amplitude Response of a Coupled

Transmission Line, All-Pass

Network Having Loss

RICHARD A. KOLKER, MEMBER, IEEE

Abstract—The voltage transfer fnnction of a first- and second-order

coupled transmission line, all-pass network having loss is derived. The

amplitude response is calculated from the transfer function. It is shown

that the amplitude response is completely determined when a, the real

part of propagation fnnetion, is known. A method for calculating a is

presented and an example is given. The results show that the losses

(dielectric and conductor) cause periodic dips in the amplitude response

of the all-pass networks. However, for practical materials and configura-

tions, the peak amplitude loss is less than 0.4 dB for the first two periodici-

ties. The results show that, for most applications, it is possible to cascade

many first-order or second-order lines before the amplitude response must

be equalized.

1, INTRODUCTION

s

TEENAART [1] has analyzed nth order, coupled trans-

mission line, all-pass networks. The proposed use of

these lines was for wideband delay-equalizing net-

works. For this application, the lines were assumed lossless;

thus the amplitude response was constant with frequency.

For other applications, the line loss cannot be neglected. In

particular, if a large number of lines are cascaded, the indi-

vidual network loss is a significant parameter of the synthe-

sis problem.

The purpose of this paper k to derive the transfer func-

tions of a first-order and second-order all-pass line having

small loss. The amplitude response can then be calculated

from this transfer function.

The paper is organized as follows. Section II contains the
basic definitions pertinent to the coupled transmission line,

all-pass network. In Section III, the transfer function for the

first- and second-order line is derived. The transfer function

depends on a, the real part of the propagation constant; so

the method by which a is calculated is discussed in Section

IV. In Section V, the amplitude response is plotted for sev-

eral practical first- and second-order lines.

II. GENERAL CONSIDERATIONS

The basic structure of the all-pass network consists of

two parallel conductors located between ground planes and

interconnected at one end. The structure has both vertical

and horizontal symmetry and each conductor has a length,

L= XO/4. A single unit of length, L, is called a first-order

line, and is shown in Fig. 1. It is assumed that the structure
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Fig. 1, First-order line.

is homogeneous and the losses are sufficiently small such

that a TEM solution still exists on the line.

The even mode impedance of this structure is given by

1
z.. = (la)

GII + GM

and the odd mode impedance is given by

1
zoo=

Gn – G12
(lb)

where Gll and G.2Zare the self susceptances per unit length

of conductor 1 and conductor 2, respectively. G12 is the

susceptance per unit length between conductors 1 and 2.

The characteristic impedance of one conductor to ground is

Zo = (Zoezoo)l/2 (2a)

and the ratio of even-to-odd mode impedance is

Gll – G12
p = zoJzoo=

Gn+ Gn
(2b)

The quantity, p, is important because the transfer function

of the all-pass network is a function of p.

An all-pass second-order line is illustrated in Fig. 2. By

definition Section II precedes Section I [1].

For the second-order line it is assumed that:

1) Each section is homogeneous and symmetrical.

2) The length of each section is AO/4.

3) The characteristic impedance, 2., of each section is

equal; 201 =202.

4) The ratio of even-to-odd mode impedance varies;

pl#p2.

In the next section, the transfer function for the first- and

second-order lines are presented.
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Fig. 2. Second-order line.

III. TRANSFERFUNCTION FOR FIRST-

AND SECOND-ORDERLINES

The presence of loss on the lines causes the traveling wave

to be attenuated by a factor proportional to aL (dissipative

loss), and it causes the characteristic impedance of the line

to become complex (mismatch loss). The attenuation con-

stant consists of two parts, i.e., a = a.+ffd where ac is the

conductor attenuation constant and ad is the dielectric at-

tenuation constant. In the following paragraphs, the lines

are assumed to be in air, so @= O. Later in the paper, a

dielectric is introduced and the equations are modified ac-

cordingly.

The characteristic impedance in the presence of small con-

ductor loss is given by

20= 2“’(1 – j/Q)l/2 (3)

where Zo’ = the characteristic impedance of the lossless net-

work and Q = P/2aC. The susceptances are perturbed in the

same manner, i.e.,

G12 = G,,’(I – j/Q)-’1~ (4a)

G,, = Gl, = Gn’(1 – j/Q) -1/2. (4b)

The mismatch loss, represented by (3) and (4), can be shown

to be small compared to the dissipative loss and will be

neglected.

The voltage transfer function for the lossless first-order

line is given by eq. (8) of Steenaart [1], as

V, ~~–jtantl

z= v’~+jtan O
(5)

where 8= @L.

For the Iossy case, substitution for 19of

f!m-jffJJ= o-j+ (6)

and expanding yields

V, (w”; – tanh #) – j tan 0(1 – W; tanh +)
—.
VI (v’;+ tanh 4) + j tan 0(1+ v’; tanh 4)

(7)

which is an expression for the voltage transfer ratio of the

lossy first-order line.

[
l–~ tan 01’ tan Oz’

v, PI 1

Now Y is <<1 (typically on the order of 0,001).

tanh # = ~. Then
Thus,

(8)

Again, since ~ is small, [1 – (~/tij)]2 = 1–24/ti~ and

(1 –#~j)2 = 1–2~~~. Thus,

/
24~7(1 + tan2 O)

l–
v,

/
p + tanz 0

=
E

‘/

2*<–p(l + tanz @
l+–

p + tan2 0

dl–r——
l+r”

Now

l–r
—--– =1-2r
l+r

and

<1–2r=l–r

Therefore,

(9)

for small r

for small r.

v’ 2JItij(l + tanz @
= l–

z
(10)

p+tanz O “’

which is a general expression for any 0.

When 0 is an odd multiple of 7/2,

V2
= 1 – 2+%/’;.

v,

When 0 is an even multiple of 7r/2,

v, HI w_—_ .
ii 4P

(ila)

(llb)

The lossy voltage transfer function for the second-order

line is obtained by following the procedure used in Appendix

I of Steenaart [1] after substitution for 0 of

el’ = e – j~l = BL – .ia,lL (12a)

82’ = o – j$z = @L – jac2L. (12b)

The result is, for the second-order line,

. tan 01’

[

tan 02’
—+-

‘] ‘4; 4P2 1
(13)

<=

[ 1[
tan 01’ tan 02’

1 – K tan 01’ tan 82’ +3’ -

V’Pl
+—

PI v“; 1
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Fig. 3. Three geometrical configurations of coupled strip lines.

Substitution of 0= an even or odd multiple of 7r/2 in (13)

and use of approximations similar to those for the first-order

line yields

v, ( +1_+ *:
=1–2— —

Flr %’/Pl )4P2 “

(14b)

The transfer function for both the first- and second-order

lines is a function of a, B, and p. It is assumed that B is

given by

p = oJ(/.@)’/’ (15)

which is the same as in the lossless case. m and to are the

free-space permeability and permittivity, respectively.

Thus, the problem of calculating the amplitude response

becomes: Given a p (or PI and P2 for the second-order line),

calculate the variation of ac with frequency.

The method by which a, is calculated is presented in the

next section; an example is also given.

IV. CALCULATION OF a

The geometrical configuration of the conductors in the

transmission line network can be either coplanar [Fig. 3(a)]

or broadside-coupled [Fig. 3(b) and (c)]. Once the geo-

metrical configuration is chosen, the even and odd mode

impedances can be expressed as functions of the dimensions

of the network [4]–[7]. These dimensions are b, the ground

plane spacing, s, the spacing between the two conductors,

and w, the width of each conductor, In practical applications,

the conductors have finite thickness, t,which can be included

in the expressions for the even and odd mode impedances

[8]. All dimensions are in meters. Once the expressions for

the even and odd mode impedances are obtained, ~, is calcu-

lated by the method presented by Cohn [9]. For the configu-

rations shown in Fig. 3(b) where the conductors are in air,

the attenuation constant for the all-pass network is given by

R 1 C3zoe C?zoe[(
13zo, dzoe— — —-—+— — —

“=753.2 Z., db 8S – dW – dt )

where R, is the surface resistance of the conductor in ohms

per meter, and a. is in nepers per meter. Since R. is propor-

tional to the square root of frequency (R, = 8.04x 10–3(j_)1f2

for silver, where~is in gigahertz), a, is proportional to (fllz.

As an example of the application of (16), the configuration

in Fig. 3(b) is chosen, and it is assumed that

~ 20.35.
b–s

(17)

Using the equations contained in Cohn [6], [8], the first

term in the brackets of ( 16) is given by

1-( azoe azoe dzoe C3zoe
—+— — —

z., w as – (3W – at )
‘0’ [l+X%)l ’18)= 188.3(d – S)

where

d= b–2t.

The second term in the brackets is given by

zoo w

{

_+(d–s)ln din (d/s)
—.

188.3 s’ 7i-(et — s) TS2 ()d–s

}
+ ~ (1 + t/s) [In (1 + t/s) – in (t/s)] . (19)

Z., is given by

188.3
Zoe=

T [ (%%)+(%9”(%)1~ +0.4413 + A h
(20)

d–s

and Zoo is given by

zoo=
188.3

‘[a+%n(iia+(aln(:)l+w+M’+3-w)l “‘2’)
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Fig. 4. Pole-zero plot of first-order line.

If the structure is filled with a homogeneous dielectric ma-

terial with a relative dielectric constant of c,, the equations

are modified as follows:

1)

2)

3)

In

Equations (16), (18), and (19) are each multiplied by

(t,)’f’. Equations (20) and (21) are each divided by

(%)’/’.

a, is replaced by ~ in (6) and (12) where a = a.+a~ and

ad= [r(e,)I’Z/A] tan 8 nepers per meter. k is the free space
wavelength and tan ~ is the loss tangent of the dielectric.

Equation (15) is multiplied by (c,)l/z.

the next section, the amplitude response of several first-

and second-order lines are plotted for a specific configura-

tion and ground plane spacing.

V. AMPLITUDE RESPONSECURVES

Before referring to the amplitude response curves, it is

instructive to study the pole-zero pattern of the first- and

second-order Iossless lines which are

5, respectively [1].

The quantity fO is given by

j, = c/k(i

where c is the velocity of light in air.

shown in Figs. 4 and

(22)

The pole-zero pattern, in both cases, is periodic with fre-

quency and the distance between the poles (zeros) and the

imaginary axis is constant. Thus, the time delay of both the

first- and second-order lines is periodic with frequency.

Now the peak loss of the amplitude response (in nepers)

of an all-pass network is proportional to the frequency

times the time delay and inversely proportional to Q [10].

Peak Amplitude Loss (nepers) = w x tiy ‘clay . (23)

Since the peak time delay of the networks is constant

.
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Fig. 5. Pole-zero plot of second-order line.

and periodic with frequency, and since Q is proportional

to the square root of frequency, the amplitude response

should be periodic with frequency, and the peak loss (in

nepers) should increase with the square root of frequency.

This means that once the peak loss for the lowest point is

known, the magnitude of the peak loss for other amplitude

minima can be obtained quite readily.

The amplitude response of several all-pass first- and

second-order lines are plotted in Figs. 6 to 9. The following

conditions were assumed:

1) The geometrical configuration was that shown in Fig.

3(b).

2) b =0.75 inch; 1=0.04 inch; e,= 1,

3) Equation (16) is valid. [Given conditions 1) and 2),

this means that p< 14.7].

4) The conductors were silver-plated.

5) The dielectric medium was air.

Figure 6 shows the amplitude response of a first-order

line for p= 14, p= 10, and P= 5, respectively.~O is 0.25 GHz.

Figure 7 is the same as Fig. 6 except that~, = 0.15 GHz. The

values of a. ranged from 8X l&3 at ~0= 0.25 GHz and

p= 14 to 1.6x 1O–3at~O=0.15 GHz and p=5.

The peak loss increases as p increases because the peak

time delay is proportional to (p)l/2, and also Q decreases as

p increases. For a given p the peak loss decreases as ~. is

increased because CYL, the attenuation per quarter wave

length, decreases.

The amplitude response of several second-order lines is

shown in Figs. 8 and 9. Again, the peak loss is proportional

to the peak time delay, and the location of the peak loss is

periodic with frequency. The second-order line with p,= 2,

PZ= 14 has the highest peak time delay, while the line with
PI= 10, p2 = 5 has the lowest peak time delay. The other lines

have the same peak time delay, but the peaks occur at a
different frequency [1]. If several lines have the same p~, the



4$2 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, AUGUST 1967

1.00

u 0.99
0
;

CL
>
< 0.98

I

t = 0.04 in

0.,, ~
0.2 0,3 0.4 0.5 0.6 0.7 0.6

FREQUENCY — GHz
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peak loss will be greatest in the line that has the highest pl,

because Q decreases with p.

Figure 10 is a plot of the amplitude response of two first-

order lines with the same p but different ~Os when both

structures are immersed in a dielectric medium. The physical

parameters of the lines are given in the figure. The response

of these lines are similar to the air dielectric lines except

that the peak loss is slightly greater (as is expected) when

there is dielectric present. The value of a. is 0.014 at~o= 0.4

GHz.

Some of the above lines were built, and the amplitude

measurements made on these lines were all within twelve

percent of the calculated values.

VI. CONCLUSION

The results show (Figs. 6 to 10) that the losses cause a dip

in the amplitude response of the coupled transmission line,

all-pass networks just as they do for the all-pass network

composed of lumped elements. However, they also show

that for practical configurations and materials, the peak

amplitude loss is small for the first two periodicities. Thus,

it is possible to cascade many first-order or second-order

lines before the amplitude response must be equalized (for

most applications).
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Propagation Through a Twisted Medium

GLENDON C. McCORMICK, MEMBER, IEEE

Abstract-An explicit solution is obtained for propagation through

a uniform twisted auisotropic medium subject to the conditions that

propagation is along the twist axis, and that the structure is fine. The

propagation constants are altered and coupling exists between the propa-

gation modes. A parameter is defined which indicatea the tendency of the

radiation to adhere to the structure of the medium. The effects at bound-

ary discontinuities are discussed, and tapers to an isotropic medinm are

dealt with. The particular application of the theory to cases of polariza-

tion conversion, circular to pIane, and plane to plane are discussed.

I. INTRODUCTION

URING the course of development of a plastic strip

D
polarizer for an antenna fed by a line source, it

became apparent that the inclination of the strips

was not a simple parameter which could be simply related
to the plane of polarization. The finite thickness and cylin-

Manuscript received August 12, 1966; revised February 24, 1967,
and April 27, 1967. Much of the material contained in thk paper was
presented at the URSI-IEEE Spring Meeting, May 1961.

The author is with the Radio and Engrg. Div., National Research
Council, Ottawa, Canada.

drical shape of the polarizer combine to require individual

strips of helicoidal shape. The inclination angle of the strips

varies significantly about the nominal 45°; and on looking

through the polarizer, the strip structure appears to twist

about the propagation axis.

Consequently, the problem of propagation through a

twisted medium became of interest. Specifically, it was

necessary to determine the correct strip inclination and the

effect of the twist on the differential phase shift. The problem

was idealized by assuming an infinitesimally fine structure,

a uniform twist, and normal incidence.

Propagation through a twisted medium is a special case

of a more general theory developed by Suchy.1 Recently, a

paper by van Doeren2 has treated the twisted medium prob-
lem by means of direct computer solutions of the differential

equations. The solution in explicit form for the case of a

uniform twist is given in the following.

1K. Suchy, “Gekoppelte Wellengleichungen fiir inhomogene
anisotrope Medien;’ Z. Naturforsch., vol. 9a, pp. 630-636, 1954.

a R. E. van Doeren, “Polarization transformation in twisted aniso-
tropic media,” IEEE Trans. Microwave Theory and Techniques, vol.

MTT-14, pp. 106-111, March 1966.


